日韩无码一级视频,久久久久久人妻一区精品,欧美va亚洲va日韩va,国产高清在线精品一区二区app电影,天堂影院一区二区三区四区

從零開始:教你簡(jiǎn)易測(cè)量運(yùn)算放大器的參數(shù)

發(fā)布時(shí)間:2024-12-20 閱讀量:1458 來(lái)源: 亞德諾半導(dǎo)體 發(fā)布人: lina

【導(dǎo)讀】運(yùn)算放大器是差分輸入、單端輸出的極高增益放大器,常用于高精度模擬電路,因此必須精確測(cè)量其性能。但在開環(huán)測(cè)量中,其開環(huán)增益可能高達(dá)107或更高,而拾取、雜散電流或塞貝克(熱電偶)效應(yīng)可能會(huì)在放大器輸入端產(chǎn)生非常小的電壓,這樣誤差將難以避免。


運(yùn)算放大器是差分輸入、單端輸出的極高增益放大器,常用于高精度模擬電路,因此必須精確測(cè)量其性能。但在開環(huán)測(cè)量中,其開環(huán)增益可能高達(dá)107或更高,而拾取、雜散電流或塞貝克(熱電偶)效應(yīng)可能會(huì)在放大器輸入端產(chǎn)生非常小的電壓,這樣誤差將難以避免。


通過(guò)使用伺服環(huán)路,可以大大簡(jiǎn)化測(cè)量過(guò)程,強(qiáng)制放大器輸入調(diào)零,使得待測(cè)放大器能夠測(cè)量自身的誤差。圖1顯示了一個(gè)運(yùn)用該原理的多功能電路,它利用一個(gè)輔助運(yùn)放作為積分器,來(lái)建立一個(gè)具有極高直流開環(huán)增益的穩(wěn)定環(huán)路。開關(guān)為執(zhí)行下面所述的各種測(cè)試提供了便利。



從零開始:教你簡(jiǎn)易測(cè)量運(yùn)算放大器的參數(shù)

圖1. 基本運(yùn)算放大器測(cè)量電路


圖1所示電路能夠?qū)⒋蟛糠譁y(cè)量誤差降至最低,支持精確測(cè)量大量直流和少量交流參數(shù)。附加的“輔助”運(yùn)算放大器無(wú)需具有比待測(cè)運(yùn)算放大器更好的性能,其直流開環(huán)增益最好能達(dá)到106或更高。如果待測(cè)器件(DUT)的失調(diào)電壓可能超過(guò)幾mV,則輔助運(yùn)放應(yīng)采用±15 V電源供電(如果DUT的輸入失調(diào)電壓可能超過(guò)10 mV,則需要減小99.9 kΩ電阻R3的阻值。)


DUT的電源電壓+V和–V幅度相等、極性相反。總電源電壓理所當(dāng)然是2 × V。該電路使用對(duì)稱電源,即使“單電源”運(yùn)放也是如此,因?yàn)橄到y(tǒng)的地以電源的中間電壓為參考。


作為積分器的輔助放大器在直流時(shí)配置為開環(huán)(最高增益),但其輸入電阻和反饋電容將其帶寬限制為幾Hz。這意味著,DUT輸出端的直流電壓被輔助放大器以最高增益放大,并通過(guò)一個(gè)1000:1衰減器施加于DUT的同相輸入端。負(fù)反饋將DUT輸出驅(qū)動(dòng)至地電位。(事實(shí)上,實(shí)際電壓是輔助放大器的失調(diào)電壓,更精確地說(shuō)是該失調(diào)電壓加上輔助放大器的偏置電流在100 kΩ電阻上引起的壓降,但它非常接近地電位,因此無(wú)關(guān)緊要,特別是考慮到測(cè)量期間此點(diǎn)的電壓變化不大可能超過(guò)幾mV)


測(cè)試點(diǎn)TP1上的電壓是施加于DUT輸入端的校正電壓(與誤差在幅度上相等)的1000倍,約為數(shù)十mV或更大,因此可以相當(dāng)輕松地進(jìn)行測(cè)量。


理想運(yùn)算放大器的失調(diào)電壓(Vos)為0,即當(dāng)兩個(gè)輸入端連在一起并保持中間電源電壓時(shí),輸出電壓同樣為中間電源電壓?,F(xiàn)實(shí)中的運(yùn)算放大器則具有幾微伏到幾毫伏不等的失調(diào)電壓,因此必須將此范圍內(nèi)的電壓施加于輸入端,使輸出處于中間電位。


圖2給出了最基本測(cè)試——失調(diào)電壓測(cè)量的配置。當(dāng)TP1上的電壓為DUT失調(diào)電壓的1000倍時(shí),DUT輸出電壓處于地電位。


從零開始:教你簡(jiǎn)易測(cè)量運(yùn)算放大器的參數(shù)

圖2. 失調(diào)電壓測(cè)量


理想運(yùn)算放大器具有無(wú)限大的輸入阻抗,無(wú)電流流入其輸入端。但在現(xiàn)實(shí)中,會(huì)有少量“偏置”電流流入反相和同相輸入端(分別為Ib–和Ib+),它們會(huì)在高阻抗電路中引起顯著的失調(diào)電壓。根據(jù)運(yùn)算放大器類型的不同,這種偏置電流可能為幾fA(1 fA= 10–15 A,每隔幾微秒流過(guò)一個(gè)電子)至幾nA;在某些超快速運(yùn)算放大器中,甚至達(dá)到1 - 2 μA。圖3顯示如何測(cè)量這些電流。


從零開始:教你簡(jiǎn)易測(cè)量運(yùn)算放大器的參數(shù)

圖3. 失調(diào)和偏置電流測(cè)量


該電路與圖2的失調(diào)電壓電路基本相同,只是DUT輸入端增加了兩個(gè)串聯(lián)電阻R6和R7。這些電阻可以通過(guò)開關(guān)S1和S2短路。當(dāng)兩個(gè)開關(guān)均閉合時(shí),該電路與圖2完全相同。當(dāng)S1斷開時(shí),反相輸入端的偏置電流流入Rs,電壓差增加到失調(diào)電壓上。


通過(guò)測(cè)量TP1的電壓變化(=1000 Ib–×Rs),可以計(jì)算出Ib–。同樣,當(dāng)S1閉合且S2斷開時(shí),可以測(cè)量Ib+。如果先在S1和S2均閉合時(shí)測(cè)量TP1的電壓,然后在S1和S2均斷開時(shí)再次測(cè)量TP1的電壓,則通過(guò)該電壓的變化可以測(cè)算出“輸入失調(diào)電流”Ios,即Ib+與Ib–之差。R6和R7的阻值取決于要測(cè)量的電流大小。


如果Ib的值在5 pA左右,則會(huì)用到大電阻,使用該電路將非常困難,可能需要使用其它技術(shù),牽涉到Ib給低泄漏電容(用于代替Rs)充電的速率。當(dāng)S1和S2閉合時(shí),Ios仍會(huì)流入100 Ω電阻,導(dǎo)致Vos誤差,但在計(jì)算時(shí)通??梢院雎运荌os足夠大,產(chǎn)生的誤差大于實(shí)測(cè)Vos的1%。


運(yùn)算放大器的開環(huán)直流增益可能非常高,107以上的增益也并非罕見,但250,000到2,000,000的增益更為常見。直流增益的測(cè)量方法是通過(guò)S6切換DUT輸出端與1 V基準(zhǔn)電壓之間的R5,迫使DUT的輸出改變一定的量(圖4中為1 V,但如果器件采用足夠大的電源供電,可以規(guī)定為10 V)。如果R5處于+1 V,若要使輔助放大器的輸入保持在0附近不變,DUT輸出必須變?yōu)楱C1 V。


從零開始:教你簡(jiǎn)易測(cè)量運(yùn)算放大器的參數(shù)

圖4. 直流增益測(cè)量


TP1的電壓變化衰減1000:1后輸入DUT,導(dǎo)致輸出改變1 V,由此很容易計(jì)算增益(= 1000 × 1 V/TP1)。


為了測(cè)量開環(huán)交流增益,需要在DUT輸入端注入一個(gè)所需頻率的小交流信號(hào),并測(cè)量相應(yīng)的輸出信號(hào)(圖5中的TP2)。完成后,輔助放大器繼續(xù)使DUT輸出端的平均直流電平保持穩(wěn)定。


從零開始:教你簡(jiǎn)易測(cè)量運(yùn)算放大器的參數(shù)

圖5. 交流增益測(cè)量


圖5中,交流信號(hào)通過(guò)10,000:1的衰減器施加于DUT輸入端。對(duì)于開環(huán)增益可能接近直流值的低頻測(cè)量,必須使用如此大的衰減值。(例如,在增益為1,000,000的頻率時(shí),1 V rms信號(hào)會(huì)將100 μV施加于放大器輸入端,放大器則試圖提供100 V rms輸出,導(dǎo)致放大器飽和。)因此,交流測(cè)量的頻率一般是幾百Hz到開環(huán)增益降至1時(shí)的頻率;在需要低頻增益數(shù)據(jù)時(shí),應(yīng)非常小心地利用較低的輸入幅度進(jìn)行測(cè)量。所示的簡(jiǎn)單衰減器只能在100 kHz以下的頻率工作,即使小心處理了雜散電容也不能超過(guò)該頻率。如果涉及到更高的頻率,則需要使用更復(fù)雜的電路。


運(yùn)算放大器的共模抑制比(CMRR)指共模電壓變化導(dǎo)致的失調(diào)電壓視在變化與所施加的共模電壓變化之比。在DC時(shí),它一般在80 dB至120 dB之間,但在高頻時(shí)會(huì)降低。


測(cè)試電路非常適合測(cè)量CMRR(圖6)。它不是將共模電壓施加于DUT輸入端,以免低電平效應(yīng)破壞測(cè)量,而是改變電源電壓(相對(duì)于輸入的同一方向,即共模方向),電路其余部分則保持不變。


從零開始:教你簡(jiǎn)易測(cè)量運(yùn)算放大器的參數(shù)

圖6. 直流CMRR測(cè)量


在圖6所示電路中,在TP1測(cè)量失調(diào)電壓,電源電壓為±V(本例中為+2.5 V和–2.5 V),并且兩個(gè)電源電壓再次上移+1 V(至+3.5 V和–1.5 V)。失調(diào)電壓的變化對(duì)應(yīng)于1 V的共模電壓變化,因此直流CMRR為失調(diào)電壓與1 V之比。


CMRR衡量失調(diào)電壓相對(duì)于共模電壓的變化,總電源電壓則保持不變。電源抑制比(PSRR)則相反,它是指失調(diào)電壓的變化與總電源電壓的變化之比,共模電壓保持中間電源電壓不變(圖7)。


從零開始:教你簡(jiǎn)易測(cè)量運(yùn)算放大器的參數(shù)

圖7. 直流PSRR測(cè)量


所用的電路完全相同,不同之處在于總電源電壓發(fā)生改變,而共模電平保持不變。本例中,電源電壓從+2.5 V和–2.5 V切換到+3 V和–3 V,總電源電壓從5 V變到6 V。共模電壓仍然保持中間電源電壓。計(jì)算方法也相同(1000 × TP1/1 V)。


為了測(cè)量交流CMRR和PSRR,需要用電壓來(lái)調(diào)制電源電壓,如圖8和圖9所示。DUT繼續(xù)在直流開環(huán)下工作,但確切的增益由交流負(fù)反饋決定(圖中為100倍)。


從零開始:教你簡(jiǎn)易測(cè)量運(yùn)算放大器的參數(shù)

圖8. 交流CMRR測(cè)量


從零開始:教你簡(jiǎn)易測(cè)量運(yùn)算放大器的參數(shù)

圖9. 交流PSRR測(cè)量


為了測(cè)量交流CMRR,利用幅度為1 V峰值的交流電壓調(diào)制DUT的正負(fù)電源。兩個(gè)電源的調(diào)制同相,因此實(shí)際的電源電壓為穩(wěn)定的直流電壓,但共模電壓是2V峰峰值的正弦波,導(dǎo)致DUT輸出包括一個(gè)在TP2測(cè)量的交流電壓。


如果TP2的交流電壓具有xV峰值的幅度(2xV峰峰值),則折合到DUT輸入端(即放大100倍交流增益之前)的CMRR為x/100 V,并且CMRR為該值與1 V峰值的比值。


交流PSRR的測(cè)量方法是將交流電壓施加于相位相差180°的正負(fù)電源,從而調(diào)制電源電壓的幅度(本例中同樣是1 V峰值、2 V峰峰值),而共模電壓仍然保持穩(wěn)定的直流電壓。計(jì)算方法與上一參數(shù)的計(jì)算方法非常相似。


當(dāng)然,運(yùn)算放大器還有許多其它參數(shù)可能需要測(cè)量,而且還有多種其它方法可以測(cè)量上述參數(shù),但正如本文所示,最基本的直流和交流參數(shù)可以利用易于構(gòu)建、易于理解、毫無(wú)問(wèn)題的簡(jiǎn)單基本電路進(jìn)行可靠測(cè)量。

文章來(lái)源:亞德諾半導(dǎo)體


免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)聯(lián)系小編進(jìn)行處理。


我愛方案網(wǎng)


推薦閱讀:

模數(shù)轉(zhuǎn)換器在高精度數(shù)據(jù)采集系統(tǒng)的應(yīng)用方案

探索體外除顫器中電容器的關(guān)鍵作用

自動(dòng)化測(cè)試儀與編碼器監(jiān)測(cè)實(shí)用指南

深入剖析熱插拔控制器中的寄生振蕩現(xiàn)象

基于炬芯科技產(chǎn)品的藍(lán)牙音箱方案


相關(guān)資訊
四腳晶振怎么區(qū)分有源無(wú)源

兩腳晶振必為無(wú)源晶振,不管是插件晶振或貼片晶振

晶振行業(yè)小型化趨勢(shì):3225及更小尺寸晶體

隨著科技的發(fā)展,尤其是移動(dòng)設(shè)備、可穿戴技術(shù)以及物聯(lián)網(wǎng)(IoT)領(lǐng)域的崛起,智能化產(chǎn)品越來(lái)越趨向于便攜式,因此對(duì)晶振的小型化的需求也逐漸增加。

24MHz無(wú)源晶振常見應(yīng)用場(chǎng)景解析

24MHz無(wú)源晶振具有多種重要作用

協(xié)同創(chuàng)新,助汽車行業(yè)邁向電氣化、自動(dòng)化和互聯(lián)化的未來(lái)

汽車行業(yè)正處在電動(dòng)化和智能化的轉(zhuǎn)型過(guò)程中,而半導(dǎo)體企業(yè)站在這一變革的最前沿

模數(shù)轉(zhuǎn)換器在高精度數(shù)據(jù)采集系統(tǒng)的應(yīng)用方案

市場(chǎng)對(duì)工業(yè)應(yīng)用的需求與日俱增,數(shù)據(jù)采集系統(tǒng)是其中的關(guān)鍵設(shè)備。它們通常用于檢測(cè)溫度、流量、液位、壓力和其他物理量,隨后將這些物理量對(duì)應(yīng)的模擬信號(hào)轉(zhuǎn)換為高分辨率的數(shù)字信息,再由軟件做進(jìn)一步處理。此類系統(tǒng)對(duì)精度和速度的要求越來(lái)越高,這些數(shù)據(jù)采集系統(tǒng)由放大器電路和模數(shù)轉(zhuǎn)換器(ADC)組成,其性能對(duì)系統(tǒng)具有決定性的影響。

自治县| 华亭县| 班戈县| 台中市| 淮阳县| 南郑县| 兰州市| 凤凰县| 青川县| 南雄市| 曲水县| 富宁县| 永新县| 屯留县| 贵定县| 磴口县| 新化县| 江华| 方城县| 搜索| 师宗县| 常宁市| 将乐县| 河池市| 勐海县| 淮南市| 蓬溪县| 乌恰县| 临高县| 银川市| 邮箱| 泰顺县| 那曲县| 克东县| 东阳市| 石楼县| 旌德县| 微山县| 天台县| 宜宾县| 谷城县|